

# CIE A-Level Physics 23 - Electromagnetism **Flashcards**

This work by PMT Education is licensed under CC BY-NC-ND 4.0





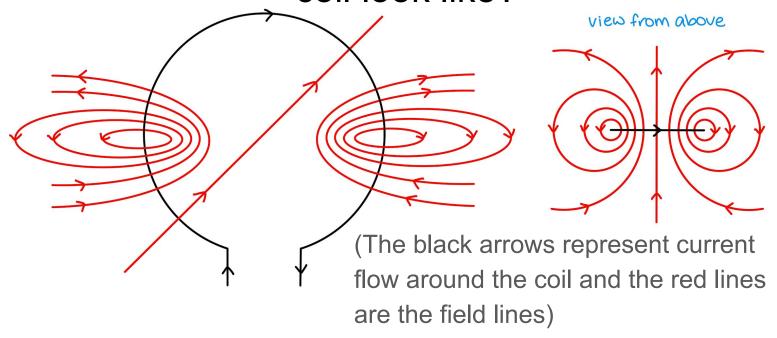






## What does the magnetic field around a flat, circular coil look like?












# What does the magnetic field around a flat, circular coil look like?









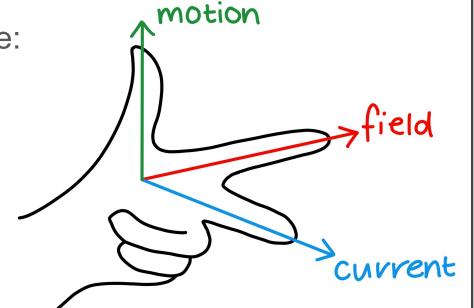


How can you predict which direction the force will push the conductor? (motor effect)












## How can you predict which direction the force will push the conductor?

Using Fleming's left-hand rule:

- First finger: Field lines
- Second finger: Current (conventional)
  - Thumb: Motion











Give the formula relating magnetic force, flux density, current, length and angle between the field and the conductor.









Give the formula relating magnetic force, flux density, current, length and angle between the field and the conductor.

#### $F = BILsin\theta$

F = Magnetic force (N)

B = Magnetic flux density (T)

I = Current in the conductor (A)

L = Length of conductor in the field (m)

 $\theta$  = Angle between the field lines and the conductor (° or rad)









# Describe an experiment to measure flux density.











#### Describe an experiment to measure flux density

- 1. Place a horseshoe magnet on a digital balance and zero it.
- 2. Connect a rigid piece of straight wire to a DC supply, variable resistor and ammeter (in series).
  - 3. Align the wire so the force on it acts upwards (so there will be a downward force on the magnet Newton's 3rd law).
    - 4. Measure the length of the wire in the field.
- 5. Record the extra mass reading on the balance and use this to calculate force (F = mg).
  - 6. Plot a graph of current against mass gradient gives BL/g.
    - a. Since L and g are both known, B can be calculated



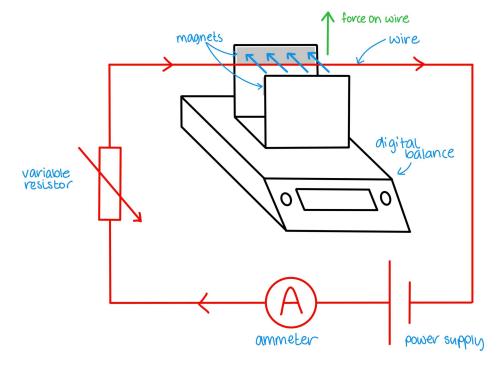






# What does the previous experiment setup look like?












#### What does the previous experiment setup look like?











What is the formula for magnetic force on a moving charge at 90° to the field lines?



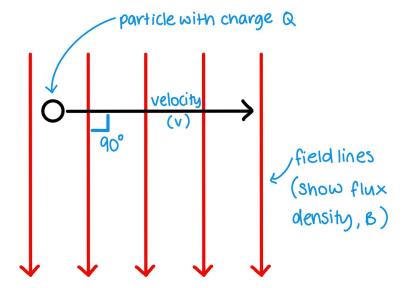








### What is the formula for magnetic force on a moving charge at 90° to the field lines?


$$F = BQv$$

F = Force(N)

B = Magnetic flux density (T)

Q = Charge of particle (C)

v = Velocity of particle (ms<sup>-1</sup>)











## How is F = BQv derived?













#### How is F = BQv derived?

From F = BIL (for magnetic force on a conductor at 90° to field lines).

Use I = Q/t and L = vt (distance = speed x time).

$$F = BQvt/t$$

The t cancels out, leaving F = BQv









## Why do charged particles move in a circular orbit in a magnetic field?











Why do charged particles move in a circular orbit in a magnetic field?

Force is always perpendicular to the velocity of the particle, so they end up being forced in a circular orbit. The particles undergo centripetal acceleration, with the centripetal force being the magnetic force.









## How can you derive the formula for the radius of the circular orbit?









# How can you derive the formula for the radius of the circular orbit?

Equating the formula for centripetal force and the formula for magnetic force (since they are the same thing in this context), you get mv<sup>2</sup>/r = BQv.

Rearrange this and you get r = mv / BQ









Using r = mv / BQ, explain how changing the mass, velocity, flux density and charge affects the radius of the orbit.











Using r = mv / BQ, explain how increasing the mass, velocity, flux density and charge affects the radius of the orbit.

Increasing mass or velocity will increase the radius.

Increasing flux density or charge will decrease the radius.









## What is the purpose of a velocity selector?







What is the purpose of a velocity selector?

They isolate particles of a specific velocity. This is useful for things like mass spectrometry.











# Define magnetic flux.













### Define magnetic flux.

The product of the magnetic flux density and the area perpendicular to the field lines. Magnetic flux is represented by the Greek letter Phi, φ.









## What is the unit for magnetic flux?











What is the unit for magnetic flux?

Weber (Wb), where  $1Wb = 1Tm^2$ 







What is the formula for magnetic flux?













## What is the formula for magnetic flux?

$$\phi = BA\cos\theta$$

φ = Magnetic flux (Wb)

**B** = Magnetic flux density (T)

- **A** = Area perpendicular to the field (in a coil this is the cross-sectional area) (m<sup>2</sup>)
- θ = angle between the normal to the coil and the field lines (° or rad)









## Define magnetic flux linkage.













### Define magnetic flux linkage.

The magnetic flux of an entire coil of wire.

This is the product of the magnetic flux and the number of turns on the coil.

Flux linkage is also measured in Wb, and it is represented as Nφ.









## State Lenz's Law.











#### State Lenz's Law.

Induced emf is always in a direction so as to oppose the change that caused it.











Explain Lenz's Law in terms of energy.











#### Explain Lenz's Law in terms of energy.

Lenz's law follows the principle of the conservation of energy. If the induced emf was in a direction that aided the change which caused it, it would be creating electrical energy from nowhere.

For example, if the north pole of a bar magnet was pushed into a solenoid and that end became a south pole, it would then pull the magnet into the coil faster and field would get stronger, pulling the magnet in faster still, etc.









# State Faraday's Law.











#### State Faraday's Law.

The induced emf in a circuit is proportional to the rate of change of flux linkage throughout the circuit.





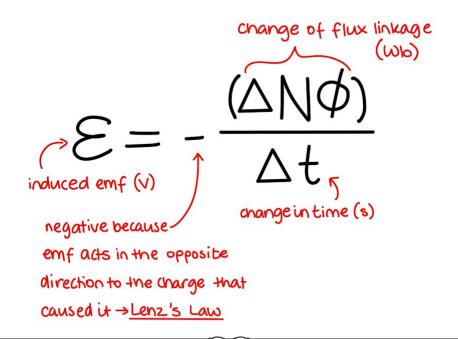






## What is the formula that links Faraday's Law and Lenz's Law?












# What is the formula that links Faraday's Law and Lenz's Law?







